Testosterone is a male hormone. Hormones are chemical messengers that are secreted by the brain directly into the blood, which carries them to organs and tissues of the body to perform their functions. Testosterone is produced by the testicles, two oval organs that produce sperm in men. Dietary supplements help with increasing the levels of hormones if we have low levels in the body. In men, testosterone plays a key role in the development of male reproductive organs. In addition, it helps with increasing muscle mass, bone mass, and the growth of body hair. It is also good for general health and well-being. It also prevents loss of bone mass and density. Testosterone also helps maintain the sex drive and energy levels. Moreover, it helps with production of sperm and red blood cells. Testosterone levels start to fall with age. As a result, some men who have low testosterone levels may benefit from testosterone prescribed by their doctor. Testosterone booster supplements may also help.
Intramuscular testosterone injections were first used around fifty years ago. Commercially available preparations contain testosterone esters in an oily vehicle. Esterification is designed to retard the release of testosterone from the depot site into the blood because the half life of unmodified testosterone would be very short. For many years intramuscular preparations were the most commonly used testosterone therapy and this is still the case in some centers. Pain can occur at injection sites, but the injections are generally well tolerated and free of major side effects. Until recently, the available intramuscular injections were designed for use at a frequency of between weekly and once every four weeks. These preparations are the cheapest mode of testosterone treatment available, but often cause supraphysiological testosterone levels in the days immediately following injection and/or low trough levels prior to the next injection during which time the symptoms of hypogonadism may return (Nieschlag et al 1976). More recently, a commercial preparation of testosterone undecanoate for intramuscular injection has become available. This has a much longer half life and produces testosterone levels in the physiological range throughout each treatment cycle (Schubert et al 2004). The usual dose frequency is once every three months. This is much more convenient for patients but does not allow prompt cessation of treatment if a contraindication to testosterone develops. The most common example of this would be prostate cancer and it has therefore been suggested that shorter acting testosterone preparations should preferably used for treating older patients (Nieschlag et al 2005). Similar considerations apply to the use of subcutaneous implants which take the form of cylindrical pellets injected under the skin of the abdominal wall and steadily release testosterone to provide physiological testosterone levels for up to six months. Problems also include pellet extrusion and infection (Handelsman et al 1997).
Studies also show a consistent negative correlation of testosterone with blood pressure (Barrett-Connor and Khaw 1988; Khaw and Barrett-Connor 1988; Svartberg, von Muhlen, Schirmer et al 2004). Data specific to the ageing male population suggests that this relationship is particularly powerful for systolic hypertension (Fogari et al 2005). Interventional trials have not found a significant effect of testosterone replacement on blood pressure (Kapoor et al 2006).
A number of epidemiological studies have found that bone mineral density in the aging male population is positively associated with endogenous androgen levels (Murphy et al 1993; Ongphiphadhanakul et al 1995; Rucker et al 2004). Testosterone levels in young men have been shown to correlate with bone size, indicating a role in determination of peak bone mass and protection from future osteoporosis (Lorentzon et al 2005). Male hypogonadism has been shown to be a risk factor for hip fracture (Jackson et al 1992) and a recent study showed a high prevalence of hypogonadism in a group of male patients with average age 75 years presenting with minimal trauma fractures compared to stroke victims who acted as controls (Leifke et al 2005). Estrogen is a well known determinant of bone density in women and some investigators have found serum estrogen to be a strong determinant of male bone density (Khosla et al 1998; Khosla et al 2001). Serum estrogen was also found to correlate better than testosterone with peak bone mass (Khosla et al 2001) but this is in contradiction of a more recent study showing a negative correlation of estrogen with peak bone size (Lorentzon et al 2005). Men with aromatase deficiency (Carani et al 1997) or defunctioning estrogen receptor mutations (Smith et al 1994) have been found to have abnormally low bone density despite normal or high testosterone levels which further emphasizes the important influence of estrogen on male bone density.

Infertility in men and women Infertility or a couple being unable to conceive a child can cause significant stress and unhappiness. There are numerous reasons for both male and female infertility but many ways in which medical assistance can overcome problems that people may face. Everything concerning infertility is discussed and explained here. Read now
Hypogonadism is a disease in which the body is unable to produce normal amounts of testosterone due to a problem with the testicles or with the pituitary gland that controls the testicles. Testosterone replacement therapy can improve the signs and symptoms of low testosterone in these men. Doctors may prescribe testosterone as injections, pellets, patches or gels.
×