Many clinical studies have looked at the effect of testosterone treatment on body composition in hypogonadal men or men with borderline low testosterone levels. Some of these studies specifically examine these changes in older men (Tenover 1992; Morley et al 1993; Urban et al 1995; Sih et al 1997; Snyder et al 1999; Kenny et al 2001; Ferrando et al 2002; Steidle et al 2003; Page et al 2005). The data from studies, on patients from all age groups, are consistent in showing an increase in fat free mass and decrease in fat mass or visceral adiposity with testosterone treatment. A recent meta-analysis of 16 randomized controlled trials of testosterone treatment effects on body composition confirms this pattern (Isidori et al 2005). There have been less consistent results with regard to the effects of testosterone treatment of muscle strength. Some studies have shown an increase in muscle strength (Ferrando et al 2002; Page et al 2005) with testosterone whilst others have not (Snyder et al 1999). Within the same trial some muscle group strengths may improve whilst others do not (Ly et al 2001). It is likely that the differences are partly due to the methodological variations in assessing strength, but it also possible that testosterone has different effects on the various muscle groups. The meta-analysis found trends toward significant improvements in dominant knee and hand grip strength only (Isidori et al 2005).
While testosterone stimulates a man’s sex drive, it also aids in achieving and maintaining an erection. Testosterone alone doesn’t cause an erection, but it stimulates receptors in the brain to produce nitric oxide. Nitric oxide is a molecule that helps trigger a series of chemical reactions necessary for an erection to occur. When testosterone levels are too low, a man may have difficulty achieving an erection prior to sex or having spontaneous erections (for example, during sleep).

In summary it’s important to know that this topic is still hotly debated, and there are a lot of inconsistencies in the data. We do know that soy contains phytoestrogens and does seem to have a lot of affects on the body, including some studies that show decreased Testosterone levels. For that reason (and the fact that it tastes like ass) I avoid it, and I recommend you also avoid it (in particular soy isolates!) if you’re seeking higher testosterone.

Both testosterone and 5α-DHT are metabolized mainly in the liver.[1][151] Approximately 50% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases, respectively.[1] An additional 40% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5α- and 5β-reductases, 3α-hydroxysteroid dehydrogenase, and 17β-HSD, in that order.[1][151][152] Androsterone and etiocholanolone are then glucuronidated and to a lesser extent sulfated similarly to testosterone.[1][151] The conjugates of testosterone and its hepatic metabolites are released from the liver into circulation and excreted in the urine and bile.[1][151][152] Only a small fraction (2%) of testosterone is excreted unchanged in the urine.[151]
Opioid substances are in common use both licit and illicit. Opiates are potent analgesics but they are also highly addictive. They are frequently prescribed for both acute and chronic pain and when used chronically, often induce opiate dependence in the user. Pain clinics regularly use narcotic agents in many of their patients. Methadone, in particular, is regularly prescribed to opiate addicts who have entered a program aimed at reducing narcotic dosage and ultimately weaning the patient off it altogether. Most men who are on chronic high doses of an opiate become hypogonadal. This was first recognized in the 1970’s when heroin addicts were found to have suppressed levels of testosterone (Brambilla et al 1977). Also suppressed were LH and FSH pointing to a probable inhibition of GnRH release.
Reviews.com has an advertising relationship with some of the offers included on this page. However, the rankings and listings of our reviews, tools and all other content are based on objective analysis. For more information, please check out our full Advertiser Disclosure. Reviews.com strives to keep its information accurate and up to date. The information in our reviews could be different from what you find when visiting a financial institution, service provider or a specific product’s website. All products are presented without warranty.
There is an increased incidence of hypogonadism in men with rheumatoid arthritis. Tengstrand et al (2002) studied hormonal levels in 104 men with rheumatoid arthritis and 99 age-matched healthy men. They divided their subjects into 3 age groups: 30–49, 40–59, 60–69. Mean non-sex hormone binding globulin-bound testosterone (bioavailable testosterone) was lower in men with rheumatoid arthritis for each of the three groups. LH was also found to be lower in the patients with rheumatoid arthritis suggesting a hypothalamic-pituitary cause of the reduced bioavailable testosterone. Of the 104 men with rheumatoid arthritis, 33 had hypogonadism compared to 7 of the 99 healthy controls.
Exercise boosts testosterone in two important ways. First, specific types of exercise actually cause our body to produce more testosterone. We’ll talk more about those in a bit. Second, exercise helps to increase muscle mass and decrease body fat. As we’ve discussed previously, adipose tissue converts testosterone into estrogen. The less fat we get, the more T we have.
Ashwagandha is sometimes included in testosterone supplements because of the hypothesis that it improves fertility. However, we couldn’t find sufficient evidence to support this claim (at best, one study found that ashwagandha might improve cardiorespiratory endurance). WebMD advocates caution when taking this herb, as it may interact with immunosuppressants, sedative medications, and thyroid hormone medications.
We scoured the database of the National Center for Biotechnology Information (part of the U.S. National Library of Science) for articles. Of the many ingredients marketed as boosting testosterone levels, we only found four backed by multiple articles based on human testing. For the best chance of boosting testosterone levels, a supplement needs to contain magnesium, fenugreek, and longjack — and some zinc wouldn’t go astray, either.

There is an increased incidence of hypogonadism in men with rheumatoid arthritis. Tengstrand et al (2002) studied hormonal levels in 104 men with rheumatoid arthritis and 99 age-matched healthy men. They divided their subjects into 3 age groups: 30–49, 40–59, 60–69. Mean non-sex hormone binding globulin-bound testosterone (bioavailable testosterone) was lower in men with rheumatoid arthritis for each of the three groups. LH was also found to be lower in the patients with rheumatoid arthritis suggesting a hypothalamic-pituitary cause of the reduced bioavailable testosterone. Of the 104 men with rheumatoid arthritis, 33 had hypogonadism compared to 7 of the 99 healthy controls.
In this study, an ethical approval No. 20171008 was obtained from Ethical Committee of Qassim province, Ministry of Health, Saudi Arabia. At the beginning, a written informed consent was taken from a 30-year-old man for participation in this study. The patient came to the King Saud Hospital, Unaizah, Qassim, Saudi Arabia, with abdominal pain. He looked pale and hazy, hence, immediately admitted. A battery of lab tests was ordered by the attending physician. Moreover, abdominal ultrasound imaging was performed. The results of the tests showed high levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver injury. Other serum parameters, such as total proteins, albumin, and iron, in addition to the levels of kidney and heart enzymes were all found to be in the normal range. A complete blood count showed normal levels of red blood cells, white blood cells, and platelets. The ultrasound images of the man’s abdomen were all found to be normal as well [Figure 2]. The patient, a sportsman, described that he was taking a testosterone commercial booster product called the Universal Nutrition Animal Stak for the purpose of enhancing his testosterone profile to achieve a better performance and body composition. The attending physician decided to admit the man for 1 week. Some medications were prescribed, and the patient was discharged later after having fully recovered.
The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.
×