In males, testosterone is synthesized primarily in Leydig cells. The number of Leydig cells in turn is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In addition, the amount of testosterone produced by existing Leydig cells is under the control of LH, which regulates the expression of 17β-hydroxysteroid dehydrogenase.[128]
There is a negative correlation of testosterone levels with plasminogen activator inhibitor-1 (PAI-1) (Glueck et al 1993; Phillips 1993), which is a major prothrombotic factor and known to be associated with progression of atherosclerosis, as well as other prothrombotic factors fibrinogen, α2-antiplasmin and factor VII (Bonithon-Kopp et al 1988; Glueck et al 1993; Phillips 1993; De Pergola et al 1997). There is a positive correlation with tissue plasminogen activator (tPA) which is one of the major fibrinolytic agents (Glueck et al 1993). Interventional trials have shown a neutral effect of physiological testosterone replacement on the major clotting factors (Smith et al 2005) but supraphysiological androgen administration can produce a temporary mild pro-coagulant effect (Anderson et al 1995).
Both testosterone and 5α-DHT are metabolized mainly in the liver.[1][151] Approximately 50% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases, respectively.[1] An additional 40% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5α- and 5β-reductases, 3α-hydroxysteroid dehydrogenase, and 17β-HSD, in that order.[1][151][152] Androsterone and etiocholanolone are then glucuronidated and to a lesser extent sulfated similarly to testosterone.[1][151] The conjugates of testosterone and its hepatic metabolites are released from the liver into circulation and excreted in the urine and bile.[1][151][152] Only a small fraction (2%) of testosterone is excreted unchanged in the urine.[151]
Testosterone is observed in most vertebrates. Testosterone and the classical nuclear androgen receptor first appeared in gnathostomes (jawed vertebrates).[189] Agnathans (jawless vertebrates) such as lampreys do not produce testosterone but instead use androstenedione as a male sex hormone.[190] Fish make a slightly different form called 11-ketotestosterone.[191] Its counterpart in insects is ecdysone.[192] The presence of these ubiquitous steroids in a wide range of animals suggest that sex hormones have an ancient evolutionary history.[193]
The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
A: Androderm comes in the form of a transdermal patch and is used for testosterone replacement therapy in patients who have insufficient levels of testosterone. Testosterone is a hormone produced in the body that plays a key role in many physiological processes in men. In some men, however, the body does not produce enough of the hormone, resulting in a variety of symptoms including decreased libido, erectile dysfunction, muscle loss, anemia and depression, among others. Androderm helps treat these symptoms and raise low testosterone levels by delivering therapeutic amounts of the hormone, which are absorbed through the skin. According to the prescribing information for Androderm, depression was a reported side effect of the medication. Other common side effects of Androderm include itching and redness at the application site, prostate abnormalities, headache, and burning or hardening of the skin at the application site. Less common side effects of Androderm include reduced libido (sex drive), fatigue, high blood pressure, anxiety, confusion, increased appetite, and body pain. For more specific information, consult with your doctor for guidance based on your health status and current medications, particularly before taking any action. Your physician can determine if your dosage of the medication needs to be adjusted or if an alternative medication should be considered. Lori Poulin, PharmD

Withania Somnifera is another name for Ashwagandha which is an ancient herb used as a medicine. It is an adaptogen because it helps the body to handle anxiety and stress. It improves T levels along with increasing sperm production. Other than improvement in sexual performance it also helps in fat loss, strength, and stamina. It reduces the stress by reducing the output of the cortisol hormone, which acts antagonist to testosterone. This reduction helps to body to trigger the testosterone production.
12. We keep you informed with a FREE eNewsletter – a $19.95 value. Every month, we send a short science-backed newsletter updating you on the latest research on Testosterone and your health. In addition, we email once-a-week “T-Tips” which are brief, to-the-point tips to help you see better results. This is a $19.95 value absolutely FREE to our customers!
Now you know I prefer studies conducted on human participants instead of rodents, but often there is no choice.  A Japanese study on rats that you can read here: http://jn.nutrition.org/content/131/8/2150.short has demonstrated pretty convincingly that garlic supplementation significantly increases testosterone.  I wish there were more tests on humans but it turns out garlic isn’t patentable (sorry Monsanto) which means there isn’t enough financial interest to warrant human studies.  Maybe I’ll conduct one.  Any volunteers?

In the hepatic 17-ketosteroid pathway of testosterone metabolism, testosterone is converted in the liver by 5α-reductase and 5β-reductase into 5α-DHT and the inactive 5β-DHT, respectively.[1][151] Then, 5α-DHT and 5β-DHT are converted by 3α-HSD into 3α-androstanediol and 3α-etiocholanediol, respectively.[1][151] Subsequently, 3α-androstanediol and 3α-etiocholanediol are converted by 17β-HSD into androsterone and etiocholanolone, which is followed by their conjugation and excretion.[1][151] 3β-Androstanediol and 3β-etiocholanediol can also be formed in this pathway when 5α-DHT and 5β-DHT are acted upon by 3β-HSD instead of 3α-HSD, respectively, and they can then be transformed into epiandrosterone and epietiocholanolone, respectively.[153][154] A small portion of approximately 3% of testosterone is reversibly converted in the liver into androstenedione by 17β-HSD.[152]
There is a negative correlation of testosterone levels with plasminogen activator inhibitor-1 (PAI-1) (Glueck et al 1993; Phillips 1993), which is a major prothrombotic factor and known to be associated with progression of atherosclerosis, as well as other prothrombotic factors fibrinogen, α2-antiplasmin and factor VII (Bonithon-Kopp et al 1988; Glueck et al 1993; Phillips 1993; De Pergola et al 1997). There is a positive correlation with tissue plasminogen activator (tPA) which is one of the major fibrinolytic agents (Glueck et al 1993). Interventional trials have shown a neutral effect of physiological testosterone replacement on the major clotting factors (Smith et al 2005) but supraphysiological androgen administration can produce a temporary mild pro-coagulant effect (Anderson et al 1995).
Sharma, R., Oni, O. A., Gupta, K., Chen, G., Sharma, M., Dawn, B., … & Barua, R. S. (2015, August 6). Normalization of testosterone level is associated with reduced incidence of myocardial infarction. European Heart Journal, 36(40), 2706-2715. Retrieved from https://academic.oup.com/eurheartj/article/36/40/2706/2293361/Normalization-of-testosterone-level-is-associated
×