Boron, a mineral, keeps the cell walls of plants strong. Eating dried fruits and nuts gives you abundant amounts of boron. You can also take boron supplements. It's important to keep your daily boron intake at less than 20 mg, however, according to a current factsheet available from the U.S. National Library of Medicine. High doses of boron can cause serious side effects such as skin inflammation and peeling, irritability, tremors or depression.
Falling in love decreases men's testosterone levels while increasing women's testosterone levels. There has been speculation that these changes in testosterone result in the temporary reduction of differences in behavior between the sexes.[53] However, it is suggested that after the "honeymoon phase" ends—about four years into a relationship—this change in testosterone levels is no longer apparent.[53] Men who produce less testosterone are more likely to be in a relationship[54] or married,[55] and men who produce more testosterone are more likely to divorce;[55] however, causality cannot be determined in this correlation. Marriage or commitment could cause a decrease in testosterone levels.[56] Single men who have not had relationship experience have lower testosterone levels than single men with experience. It is suggested that these single men with prior experience are in a more competitive state than their non-experienced counterparts.[57] Married men who engage in bond-maintenance activities such as spending the day with their spouse/and or child have no different testosterone levels compared to times when they do not engage in such activities. Collectively, these results suggest that the presence of competitive activities rather than bond-maintenance activities are more relevant to changes in testosterone levels.[58]
3. Beans. Beans are an excellent source of fiber, protein and zinc. If you compare beans with other vegetables, you will see that beans have the highest zinc content. This is a good thing if you’re trying to get your testosterone levels up since zinc plays an important role when it comes to testosterone production. Without an adequate amount of zinc in the body, the testosterone produced will be converted into estrogen. Likewise zinc may help convert estrogen back into testosterone.  Yet another study on rats confirms this.  Sorry for the rat-heavy studies in this post.
Now you know I prefer studies conducted on human participants instead of rodents, but often there is no choice.  A Japanese study on rats that you can read here: http://jn.nutrition.org/content/131/8/2150.short has demonstrated pretty convincingly that garlic supplementation significantly increases testosterone.  I wish there were more tests on humans but it turns out garlic isn’t patentable (sorry Monsanto) which means there isn’t enough financial interest to warrant human studies.  Maybe I’ll conduct one.  Any volunteers?
It may be unlikely to completely eliminate products with EDCs, but there are a number of practical strategies that you can try to limit your exposure to these gender-bending substances. The first step would be to stop using Teflon cookware, as EDCs can leach out from contaminated cookware. Replace them with ceramic ones. Stop eating out of cans, as the sealant used for the can liner is almost always made from powerful endocrine-disrupting petrochemicals known as bisphenols, e.g. Bisphenol A, 

It seems like today it’s a badge of honor to train every day until exhaustion. The ethos is to push yourself harder and harder every day. If that’s your philosophy towards exercise, you might be sabotaging your testosterone levels (as well as your 20 Mile March). Studies have shown that overtraining can reduce testosterone levels significantly. Yes, it’s important to exercise hard, but it’s even more important to give your body rest so it can recuperate from the damage you inflicted upon it.
Studies also show a consistent negative correlation of testosterone with blood pressure (Barrett-Connor and Khaw 1988; Khaw and Barrett-Connor 1988; Svartberg, von Muhlen, Schirmer et al 2004). Data specific to the ageing male population suggests that this relationship is particularly powerful for systolic hypertension (Fogari et al 2005). Interventional trials have not found a significant effect of testosterone replacement on blood pressure (Kapoor et al 2006).
A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.
I highly recommend using a great essential amino acid mix post-exercise in order to boost testosterone.  These essential amino acids and especially the concentrated branched chain amino acids leucine, isoleucine and valine stimulate muscle protein synthesis.  Getting these amino acids in the post-workout window dramatically boosts testosterone production (14).  I like using our Amino Strong and will often recommend a scoop pre-workout and post-workout for the best muscle building, testosterone boosting benefits.
To get a good dietary source of selenium, you can eat shellfish or Brazilian nuts. 1-2 Brazilian nuts is enough to get 200% of your daily intake. You don’t need any more than that. Read more about increasing testosterone with Brazilian nuts here. It’s a good idea to get your selenium levels checked before hand and then adjust your diet as needed to avoid selenium toxicity.
The regulation of testosterone production is tightly controlled to maintain normal levels in blood, although levels are usually highest in the morning and fall after that. The hypothalamus and the pituitary gland are important in controlling the amount of testosterone produced by the testes. In response to gonadotrophin-releasing hormone from the hypothalamus, the pituitary gland produces luteinising hormone which travels in the bloodstream to the gonads and stimulates the production and release of testosterone.
×