A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
These researchers took saliva samples from recreational women athletes before and after playing 10 minutes of flag football. The data showed that this short, intense burst of competitive sport triggered the immediate release of testosterone. Interestingly, the subjects' mental state also contributed to the data. Self-rated performance scores were directly related to testosterone levels.
Finally, we looked at the proprietary blends of our remaining boosters, and dug into their ingredient lists. Supplements frequently include ingredients known for their “folk-lore” value; they’re believed to work, even when there isn’t any scientific background to prove it. Though we didn’t ding points if an ingredient wasn’t proven to be good (just so long as it wasn’t proven to be bad), we didn’t want to include any ingredient with evidence of causing harm.

To find the best testosterone booster, we collected every supplement available on BodyBuilding.com, and cross-checked our list against the top results on best of lists like MensFitness, BroScience, and BodyNutrition. We only looked at pills since some of the ingredients in testosterone boosters have a reputation for tasting bad, and powders just prolong the experience. There are a lot — 133 of them to be precise — and they all claim to boost testosterone levels. Testosterone (for men) is “thought to regulate sex drive (libido), bone mass, fat distribution, muscle mass and strength, and the production of red blood cells and sperm.” If a supplement can increase your natural testosterone levels, the rest should follow. As we mentioned above, it’s not that simple, and at best, you’ll experience only a short-lived boost.
Both testosterone and 5α-DHT are metabolized mainly in the liver.[1][151] Approximately 50% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases, respectively.[1] An additional 40% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5α- and 5β-reductases, 3α-hydroxysteroid dehydrogenase, and 17β-HSD, in that order.[1][151][152] Androsterone and etiocholanolone are then glucuronidated and to a lesser extent sulfated similarly to testosterone.[1][151] The conjugates of testosterone and its hepatic metabolites are released from the liver into circulation and excreted in the urine and bile.[1][151][152] Only a small fraction (2%) of testosterone is excreted unchanged in the urine.[151]
Testosterone insufficiency has been associated with HIV infection in men (Dobs et al 1988). Early reports suggested that testosterone therapy may have an ameliorating effect on both depression and decreased energy in HIV infected men, even if testosterone levels were not reduced (Rabkin et al 1999; Grinspoon et al 2000; Rabkin et al 2000). Both depression and fatigue, however, are common features of HIV-positive men and may be associated with factors other than reduced levels of testosterone. The disease itself may induce depression and fatigue may be a consequence of the disease, per se, or of some of the medications used to control HIV.
Decreased testosterone production in men with rheumatoid arthritis is a common finding (Stafford et al 2000), and it is now generally recognized that androgens have the capacity to suppress both the hormonal and cellular immune response and so act as one of the body’s natural anti-inflammatory agents (Cutolo et al 2002). This known anti-inflammatory action of testosterone has led to studying the effect of testosterone therapy in men with rheumatoid disease. Although not all studies have reported positive effects of testosterone treatment (Hall et al 1996), some studies do demonstrate an improvement in both clinical and chemical markers of the immune response (Cutolo et al 1991; Cutolo 2000). This observation would go along with more recent evidence that testosterone or its metabolites protects immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells (Page et al 2006).
Total levels of testosterone in the body are 264 to 916 ng/dL in men age 19 to 39 years,[165] while mean testosterone levels in adult men have been reported as 630 ng/dL.[166] Levels of testosterone in men decline with age.[165] In women, mean levels of total testosterone have been reported to be 32.6 ng/dL.[167][168] In women with hyperandrogenism, mean levels of total testosterone have been reported to be 62.1 ng/dL.[167][168]
Testosterone retains nitrogen and is an essential ingredient in the development and maintenance of muscle mass (Sinha-Hikim et al 2006). With a diminution in testosterone, muscle mass diminishes as does strength. Weakness and fatigue result. A number of studies have demonstrated the ability of testosterone to restore lean body mass (muscle) in hypogonadal men, while at the same time causing a reduction in fat mass (Wang et al 2004). Treatment of hypogonadal men with testosterone results in improvement in overall physical performance as well as strength as assessed by, eg, hand grip power (Page 2005). Because of decreased muscle strength and impaired balance, older hypogonadal men are susceptible to falling and since they may already be osteopenic or osteoporotic as a consequence of hypogonadism, they are at increased risk for fracture as a result of the fall (Szulc et al 2003). Men with low levels of testosterone as in androgen deprivation therapy for prostate cancer, have a significant decrease in lean body mass and hemoglobin, while at the same time they experience an increase in weight, body fat and body mass index (Smith et al 2002). Treatment of frail hypogonadal men with testosterone, therefore, can result in changes in muscle gene expression, increased muscle mass, improvements in strength, power and endurance and improved physical function.

Levels of testosterone naturally decrease with age, but exactly what level constitutes "low T," or hypogonadism, is controversial, Harvard Medical School said. Testosterone levels vary wildly, and can even differ depending on the time of day they're measured (levels tend to be lower in the evenings). The National Institutes of Health includes the following as possible symptoms of low testosterone:
“I'm 55 years old and hitting the ball further than I've ever hit, and I'm not getting tired going 18 holes! And when I play softball I'm hitting the ball further. I work for the DWP in LA and it's a very physically demanding job. Andro400 really helps because we work 16 hour days a lot. I was turning down a lot of overtime, but when I started taking Andro400, it got me through the day. I really notice a difference – even my wife did. It really works!”
Why bother with such common micronutrients? Because it's not uncommon for athletes to suffer from zinc and magnesium deficiencies, partly due to inadequate replenishing of levels after intense bouts of exercise. Deficiencies in these key minerals can lead to a poor anabolic hormone profile, impaired immune function, and increased cortisol, ultimately leading to decreases in strength and performance.[6]
Clinical trials of the effect of testosterone on glucose metabolism in men have occurred in diabetic and non-diabetic populations. Data specific to aging males is not available. A series of studies investigated the effects of testosterone or dihydrotestosterone given for 6 weeks or 3 months to middle aged, non-diabetic obese men (Marin, Holmang et al 1992; Marin, Krotkiewski et al 1992; Marin et al 1993). It was found that physiological treatment doses led to improved insulin resistance, as measured by the gold standard technique using a euglycemic clamp and/or serum glucose and insulin responses during glucose tolerance test. These improvements were associated with decreased central obesity, measured by computered tomography (CT) or waist-hip ratio, without reduced total fat mass. Insulin resistance improved more with testosterone than dihydrotestosterone treatment and beneficial effects were greater in men with lower baseline testosterone levels. Increasing testosterone levels into the supraphysiological range lead to decreased glucose tolerance.
Like other steroid hormones, testosterone is derived from cholesterol (see figure).[124] The first step in the biosynthesis involves the oxidative cleavage of the side-chain of cholesterol by cholesterol side-chain cleavage enzyme (P450scc, CYP11A1), a mitochondrial cytochrome P450 oxidase with the loss of six carbon atoms to give pregnenolone. In the next step, two additional carbon atoms are removed by the CYP17A1 (17α-hydroxylase/17,20-lyase) enzyme in the endoplasmic reticulum to yield a variety of C19 steroids.[125] In addition, the 3β-hydroxyl group is oxidized by 3β-hydroxysteroid dehydrogenase to produce androstenedione. In the final and rate limiting step, the C17 keto group androstenedione is reduced by 17β-hydroxysteroid dehydrogenase to yield testosterone.
There have been case reports of development of prostate cancer in patients during treatment with testosterone, including one case series of twenty patients (Gaylis et al 2005). It is not known whether this reflects an increase in incidence, as prostate cancer is very common and because the monitoring for cancer in patients treated with testosterone is greater. Randomized controlled trials of testosterone treatment have found a low incidence of prostate cancer and they do not provide evidence of a link between testosterone treatment and the development of prostate cancer (Rhoden and Morgentaler 2004). More large scale clinical trials of longer durations of testosterone replacement are required to confirm that testosterone treatment does not cause prostate cancer. Overall, it is not known whether testosterone treatment of aging males with hypogonadism increases the risk of prostate cancer, but monitoring for the condition is clearly vital. This should take the form of PSA blood test and rectal examination every three months for the first year of treatment and yearly thereafter (Nieschlag et al 2005). Age adjusted PSA reference ranges should be used to identify men who require further assessment. The concept of PSA velocity is also important and refers to the rate of increase in PSA per year. Patients with abnormal rectal examination suggestive of prostate cancer, PSA above the age specific reference range or a PSA velocity greater than 0.75 ng/ml/yr should be referred to a urologist for consideration of prostate biopsy.
Testosterone is observed in most vertebrates. Testosterone and the classical nuclear androgen receptor first appeared in gnathostomes (jawed vertebrates).[189] Agnathans (jawless vertebrates) such as lampreys do not produce testosterone but instead use androstenedione as a male sex hormone.[190] Fish make a slightly different form called 11-ketotestosterone.[191] Its counterpart in insects is ecdysone.[192] The presence of these ubiquitous steroids in a wide range of animals suggest that sex hormones have an ancient evolutionary history.[193]

Unfortunately, in the modern world, stresses and emotional exhaustion lie in wait for men at every step. Nowadays, burnout is a constant state for many men. Of course, this causes great harm to the men’s health. Stresses drain of vitality and affect emotional state. Besides, they are also very dangerous for the nervous system. The nature is wise. And the body of a man who is not subject to stress can produce more testosterone.


A 46 XY fetus is destined to become a male because the Y chromosome carries testicular determining gene which initiates transformation of the undifferentiated gonad into testes (Töhönen 2003). The testes subsequently produce both Mullerian Inhibiting Factor (to induce degeneration of the Mullerian system, the internal female ductal apparatus) and testosterone (to stimulate growth and development of the Wolffian system – epididymus, vas deferens, seminal vesicle and, after conversion to dihydrotestosterone (DHT) by the enzyme 5-α-reducase, the prostate gland). DHT is also the primary androgen to cause androgenization of the external genitalia.
The maximum hormone concentration in the blood is reported immediately after the workout. And the effect lasts throughout the day. However, it’s important to ensure that your physical activity is moderate. The matter is that too much high-intensity exercise can give an undesirable result. But even if for any reason you can’t attend a gym, it’s not a problem. Just move as much as possible during the day. Even simple walking will be of great benefit.

Now you know I prefer studies conducted on human participants instead of rodents, but often there is no choice.  A Japanese study on rats that you can read here: http://jn.nutrition.org/content/131/8/2150.short has demonstrated pretty convincingly that garlic supplementation significantly increases testosterone.  I wish there were more tests on humans but it turns out garlic isn’t patentable (sorry Monsanto) which means there isn’t enough financial interest to warrant human studies.  Maybe I’ll conduct one.  Any volunteers?
With the decline of ovarian function in menopause, not only do estrogen levels decline, but so does testosterone availability, since the ovaries contribute, either by direct secretion or through precursor production, about 50 percent of circulating testosterone. The other 50 percent is supplied by the adrenal glands. Many post-menopausal or oophorectomized women are symptomatic as a consequence of reduced testosterone, the leading symptom being loss of libido (Sherwin and Gelfand 1987; Simon et al 2005). There is an increasing trend toward testosterone supplementation in these women. Such supplementation may also lead, not only to increased libido, but to increased bone mineral density and an improvement in general overall sense of well-being including energy, strength, motivation and mood (Davis et al 1995; Davis et al 2000).
The illegal testosterone supplements give immediate results and can be obtained without a prescription. However, it is strongly recommended to avoid these boosters as they contain an anabolic steroid, which is harmful to the body. The legal kinds of them are the best testosterone supplements and are considered as safe and efficient for muscle growth and to increase sex drive, but they are also not completely devoid of adverse effects. There are many side effects associated with the use of these testosterone therapy. The natural testosterone boosters are the safest and highly recommended testosterone supplements.
“I did a lot of research on Andro400 before I ordered it because I've tried other products in the past and they haven't worked. But with this I could not believe the difference within, literally within a month. I'm 62 years old and since I started taking it I have lost 37 lbs. And I have more energy than I've had in 20 years. It's still coming off, but it's coming off slower now. It was the belly fat. I could get weight off but I could never get the tummy off, and now the tummy's coming off. Libido -- everything's better all the way around.“ 

Carbs play a big part in determining your Testosterone levels. Let's start with what to avoid. First, research shows that a large serving of sugar (75g of glucose), decreased Testosterone levels by as much as 25%! (25 & 26). I know this is a pretty extreme dosage, but you may want to avoid massive servings of sugar! Also, men who have Metabolic syndrome have lower Testosterone levels (27). Metabolic syndrome is often brought about by chronic high blood sugar which leads to insulin resistance.
It is important to note that you can certainly boost testosterone naturally without supplementation. Supplements are expensive now a days and a lot of people do not like taking tons of pills. Plus, a lot of these vitamins and minerals are only needed if deficient, so I recommend getting routine blood work done to see where you are short. I can almost guarantee you will come out vitamin D deficient, so while you don’t have to take these, they will certainly help.
Researchers at Ball State University found that “strength training can induce growth hormone and testosterone release.” (6) Another study from the University of Nebraska Medical Center researched the acute effects of weight lifting on serum testosterone levels. (7) The results concluded that even moderate weight lifting and light weightlifting increased serum testosterone levels in participants.

Unfortunately, in the modern world, stresses and emotional exhaustion lie in wait for men at every step. Nowadays, burnout is a constant state for many men. Of course, this causes great harm to the men’s health. Stresses drain of vitality and affect emotional state. Besides, they are also very dangerous for the nervous system. The nature is wise. And the body of a man who is not subject to stress can produce more testosterone.


This doesn’t mean Super Test is perfect — we take a closer look at some of its ingredients below — but it beats out the competition. Every other supplement we looked at either didn’t have all four ingredients, overdosed us on vitamins or minerals (a good way to develop kidney and liver problems), contained ingredients that would harm us, or some combination thereof.
There is increasing interest in the group of patients who fail to respond to treatment with PDE-5 inhibitors and have low serum testosterone levels. Evidence from placebo-controlled trials in this group of men shows that testosterone treatment added to PDE-5 inhibitors improves erectile function compared to PDE-5 inhibitors alone (Aversa et al 2003; Shabsigh et al 2004).

Testosterone functions within the brain. There are several lines of evidence for this: there are androgen receptors within the brain; testosterone is converted to both dihydrotestosterone (DHT) and estradiol by the actions of 5-α-reductase and aromatase respectively in the brain; steroid hormones promote neuronal cell growth and survival (Azad et al 2003). Testosterone enhances cerebral perfusion in hypogonadal men and that perfusion takes place specifically in Brodman areas 8 and 24, regions of the brain that are concerned with: strategic planning, higher motor action, cognitive behaviors, emotional behavior, generalized emotional reaction, wakefulness and memory (Greenlee 2000; Azad et al 2003). Studies of cognition demonstrate that older men with higher levels of free testosterone index (a surrogate measure of bioavailable testosterone) have better scores in tests of: visual memory, verbal memory, visuospatial functions and visuomotor scanning. Hypogonadal men have lower scores in tests of memory, visuospatial function, with a faster decline in visual memory (Moffat et al 2002). In a very small, short term placebo-controlled study hypogonadal men with Alzheimer’s Disease (AD) treated with testosterone demonstrated a modest improvement in a cognition assessment score in AD (Tan and Pu 2003).
The effect excess testosterone has on the body depends on both age and sex. It is unlikely that adult men will develop a disorder in which they produce too much testosterone and it is often difficult to spot that an adult male has too much testosterone. More obviously, young children with too much testosterone may enter a false growth spurt and show signs of early puberty and young girls may experience abnormal changes to their genitalia. In both males and females, too much testosterone can lead to precocious puberty and result in infertility. 
×