Intracoronary artery infusion of testosterone causes significant coronary artery dilatation and not constriction as previously thought (Webb et al 1999). When degree of coronary obstruction is assessed by angiography, there is a direct relationship between degree of coronary artery narrowing and reduced testosterone levels (Phillips et al 1994). Men with low testosterone levels have been observed to have: premature atherosclerosis, increased visceral adipose tissue, hyperinsulinemia, and other risk factors for myocardial infarction (Phillips 2005). Insulin resistance has been shown to be associated with a decrease in Leydig cell secretion of testosterone (Pitteloud et al 2005). Muller and colleagues suggest that low endogenous total testosterone and SHBG levels increase the risk of metabolic syndrome in aging and aged men. They demonstrated that low levels of testosterone are related to lower insulin sensitivity and higher fasting insulin levels (Muller et al 2005). These authors speculate that testosterone might play a protective role in the development of metabolic syndrome, insulin resistance, diabetes mellitus and cardiovascular disease in aging men.
No one will argue with the well-established fact that the dramatic lows of testosterone as seen in castration or other significant primary testicular disturbances such as those induced by chemotherapy, radiation therapy, congenital problems, or as seen in secondary testicular insufficiency (eg, large compressive pituitary or hypothalamic tumors) produce dramatic signs and symptoms of testosterone deficiency that require testosterone replacement therapy. Less clear, or at least more controversial, is the necessity of treating the gentler reduction of testosterone seen in the aging process.
These results have been echoed in clinical trials. A meta-analysis of 24 RCTs looked at weight loss caused by diet or bariatric surgery:[22] In the diet studies, the average 9.8% weight loss was linked to a testosterone increase of 2.9 nmol/L (84 ng/dL). In the bariatric-surgery studies, the average 32% weight loss was linked to a testosterone increase of 8.7 nmol/L (251 ng/dL).

Thanks for all the time and energy you put into this . Very informative . Great read. As far as intermittent fasting ,it’s the best. Check out Kinobody on YouTube for great info. I just stopped T injections and was looking for a good Tongkat Ali . Is Herbolab better than SD200 from Pure Science Supplements . I know there is a lot of garbage out there,just want the best quality . Thanks again .


This is because your body is really good at self-regulating your hormone levels. So if you have normal testosterone levels, boosting above your natural base level may at best give you a few hours while your body makes, and then immediately processes out, the excess testosterone. This means you might experience higher than your average testosterone levels, but not by much, and only for a little while.
“The Andro 400 has been a plus to my daily requirements of energy, stamina and weight loss. I have seen a noticeable reduction in my waistline from a 40" waist to a 37" waist. I am 6'6" and weighed 252, I now weigh 238 and feel much better. Without too much information, my sex drive and performance has been positively enhanced with greater sensitivity and stamina during those intimate times with my wife. Greater sensation, pleasure and results are evident.”

^ Butenandt A, Hanisch G (1935). "Uber die Umwandlung des Dehydroandrosterons in Androstenol-(17)-one-(3) (Testosterone); um Weg zur Darstellung des Testosterons auf Cholesterin (Vorlauf Mitteilung). [The conversion of dehydroandrosterone into androstenol-(17)-one-3 (testosterone); a method for the production of testosterone from cholesterol (preliminary communication)]". Chemische Berichte (in German). 68 (9): 1859–62. doi:10.1002/cber.19350680937.
Longjack, also known as Tongkat ali and pasak bumi, is a shrub hailing from Southeast Asia purporting to improve libido. It’s gaining traction in the scientific community for potentially increasing testosterone levels, and researchers at South Africa’s University of the Western Cape found that longjack improved testosterone levels and muscular strength in physically active seniors (a population with typically low testosterone).
There are a lot of test booster blends out there. A lot of them are junk. I have tried to cover the most effective herbs above. As always, I recommend doing your own research and experiment to see if you notice an effect. If you would like one easy herbal solution I recommend starting with Mike Mahlers Aggressive Strength product purely because I have solid anecdotal evidence of its effectiveness. But again, supplements should be seen purely as that - a supplement to a healthy diet, plenty of sleep, hard training with adequate rest.

A blood test may not be enough to determine your levels, because testosterone levels can fluctuate during the day. Once you determine that you do have low levels, there are a number of options to take. There are synthetic and bioidentical testosterone products out on the market, but I advise using bioidentical hormones like DHEA. DHEA is a hormone secreted by your adrenal glands. This substance is the most abundant precursor hormone in the human body. It is crucial for the creation of vital hormones, including testosterone and other sex hormones.
Instead of turning to some drug that can only ameliorate symptoms and cause additional complications, I recommend using a natural saw palmetto supplement. Dr. Moerck says that there are about 100 clinical studies on the benefits of saw palmetto, one of them being a contributed to decreased prostate cancer risk. When choosing a saw palmetto supplement, you should be wary of the brand, as there are those that use an inactive form of the plant.
Erectile dysfunction is a common finding in the aging male. A prevalence of over 70% was found in men older than 70 in a recent cross-sectional study (Ponholzer et al 2005). Treatment with phosphodiesterase-5 (PDE-5) inhibitors is proven to be effective for the majority of men but some do not respond (Shabsigh and Anastasiadis 2003). The condition is multi-factorial, with contributions from emotional, vascular, neurological and pharmacological factors. The concept of erectile dysfunction as a vascular disease is particularly interesting in view of the evidence presented above, linking testosterone to atherosclerosis and describing its action as a vasodilator.
Currently available testosterone preparations in common use include intramuscular injections, subcutaneous pellets, buccal tablets, transdermal gels and patches (see Table 2). Oral testosterone is not widely used. Unmodified testosterone taken orally is largely subject to first-pass metabolism by the liver. Oral doses 100 fold greater than physiological testosterone production can be given to achieve adequate serum levels. Methyl testosterone esters have been associated with hepatotoxicity. There has been some use of testosterone undecanoate, which is an esterified derivative of testosterone that is absorbed via the lymphatic system and bypasses the liver. Unfortunately, it produces unpredictable testosterone levels and increases testosterone levels for only a short period after each oral dose (Schurmeyer et al 1983).
This evidence, together with the beneficial effects of testosterone replacement on central obesity and diabetes, raises the question whether testosterone treatment could be beneficial in preventing or treating atherosclerosis. No trial of sufficient size or duration has investigated the effect of testosterone replacement in primary or secondary prevention cardiovascular disease. The absence of such data leads us to examine the relationship of testosterone to other cardiovascular risk factors, such as adverse lipid parameters, blood pressure, endothelial dysfunction, coagulation factors, inflammatory markers and cytokines. This analysis can supply evidence of the likely effects of testosterone on overall cardiovascular risk. This has limitations, however, including the potential for diverging effects of testosterone on the various factors involved and the resultant impossibility of accurately predicting the relative impact of such changes.

There are three categories of healthy fat. Number one is healthy saturated fat. The truth about saturated fat is it’s actually good for you if it’s the proper kind. Healthy saturated fat is found in coconut oil and raw, fermented dairy products like goat milk kefir, yogurt, or raw goat or sheep milk cheese. However, avoid conventional dairy because it will actually damper your testosterone.
Growth of spermatogenic tissue in testicles, male fertility, penis or clitoris enlargement, increased libido and frequency of erection or clitoral engorgement occurs. Growth of jaw, brow, chin, and nose and remodeling of facial bone contours, in conjunction with human growth hormone occurs.[21] Completion of bone maturation and termination of growth. This occurs indirectly via estradiol metabolites and hence more gradually in men than women. Increased muscle strength and mass, shoulders become broader and rib cage expands, deepening of voice, growth of the Adam's apple. Enlargement of sebaceous glands. This might cause acne, subcutaneous fat in face decreases. Pubic hair extends to thighs and up toward umbilicus, development of facial hair (sideburns, beard, moustache), loss of scalp hair (androgenetic alopecia), increase in chest hair, periareolar hair, perianal hair, leg hair, armpit hair.
Are you getting enough vitamin D? Vitamin D is an essential nutrient, but it can be difficult for people to know if they are getting the right amount. Some people will be able to get enough vitamin D from sunlight. Others may need to make dietary changes or take supplements. Here, we explain how to get vitamin D from sunlight, food, and supplements. Read now

That said, a group of researchers at the National University of Malaysia did a systemic literature review of longjack, looking for clinical research that demonstrated a relationship between the shrub and testosterone levels. Of 150 articles, only 11 met their inclusion criteria — involving humans and scientifically rigorous. However, of those 11 studies, seven “revealed remarkable association” between using longjack and improving male sexual health, while the remaining four “failed to demonstrate sufficient effects.” The team concluded that longjack looks “promising” when it comes to raising low testosterone, and that there is convincing evidence that it works.


The testosterone booster pills are effective from 4 to 8 hours. To maintain testosterone levels high during the whole day, you need a multiple daily dosing regimen. 2-times daily dosing still not always can improve hormone production to the greatest extent. 3-4-times daily dosing is the best solution to make your body normalize testosterone synthesis and prevent it from decreasing before you take another pill. Don’t forget that the regularity of daily supplement intake is crucial if you really aspire to give a boost to hormone production.

For men with low blood testosterone levels, the benefits of hormone replacement therapy usually outweigh potential risks. However, for most other men it's a shared decision with your doctor. It offers men who feel lousy a chance to feel better, but that quick fix could distract attention from unknown long-term hazards. "I can't tell you for certain that this raises your personal risk of heart problems and prostate cancer, or that it doesn't," Dr. Pallais says.
Dr. Anthony's Notes: Creatine is damn effective. Period. It's research proven to benefit testosterone, energy levels, muscle preservation, and your brain function. Although creatine can be found naturally in a good high-protein diet, taking 5g daily is a great idea for most guys – especially those over 35. Remember to take your creatine AWAY from caffeine – the two substances inhibit each other's absorption. Verdict: this is one of the natural testosterone supplements that work. Best Food Sources: wild game (including venison, elk, buffalo, and bison), grass-fed beef, organic chicken, organic turkey, and wild-caught fish. How To Take Creatine Monohydrate: 5g daily away from caffeine.
There are positive correlations between positive orgasm experience in women and testosterone levels where relaxation was a key perception of the experience. There is no correlation between testosterone and men's perceptions of their orgasm experience, and also no correlation between higher testosterone levels and greater sexual assertiveness in either sex.[34]
Pine Pollen is an androgen, meaning in theory it can raise testosterone levels – effectively making it a naturally derived source of testosterone. Read more about this on the links below. But like I said I started taking it for a few weeks and did notice a bit more ‘up and go’ so to speak, but it did only last a few weeks. I have tried cycling it but haven’t noticed the same effects as I had when I initially started with it. I’m still experimenting and will keep this page updated. Therefore I recommend doing your own research.
A testicular action was linked to circulating blood fractions – now understood to be a family of androgenic hormones – in the early work on castration and testicular transplantation in fowl by Arnold Adolph Berthold (1803–1861).[177] Research on the action of testosterone received a brief boost in 1889, when the Harvard professor Charles-Édouard Brown-Séquard (1817–1894), then in Paris, self-injected subcutaneously a "rejuvenating elixir" consisting of an extract of dog and guinea pig testicle. He reported in The Lancet that his vigor and feeling of well-being were markedly restored but the effects were transient,[178] and Brown-Séquard's hopes for the compound were dashed. Suffering the ridicule of his colleagues, he abandoned his work on the mechanisms and effects of androgens in human beings.
Yeah, you could do expensive hormone replacement. Or you could take a synthetic test booster. But at the end of the day, neither of these compare to being able to boost testosterone naturally. Nature didn’t intend for you to inject yourself with hormones. Somewhere along the line something went wrong. At your natural level, you are designed to flourish. And the world has everything available for you and your testosterone levels to do so.

The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects.


The regular intake of testosterone boosters is known for the high level of safety comparing to the hormone injections and the use of illegal steroids. But still to protect yourself against any possible adverse reactions, you should remember that the supplementation can’t be continuous. The breaks from time to time are required. Such an approach to the use of boosters is healthy and best-working if you aspire to enhance own hormone production without any harm.

A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
Many clinical studies have looked at the effect of testosterone treatment on body composition in hypogonadal men or men with borderline low testosterone levels. Some of these studies specifically examine these changes in older men (Tenover 1992; Morley et al 1993; Urban et al 1995; Sih et al 1997; Snyder et al 1999; Kenny et al 2001; Ferrando et al 2002; Steidle et al 2003; Page et al 2005). The data from studies, on patients from all age groups, are consistent in showing an increase in fat free mass and decrease in fat mass or visceral adiposity with testosterone treatment. A recent meta-analysis of 16 randomized controlled trials of testosterone treatment effects on body composition confirms this pattern (Isidori et al 2005). There have been less consistent results with regard to the effects of testosterone treatment of muscle strength. Some studies have shown an increase in muscle strength (Ferrando et al 2002; Page et al 2005) with testosterone whilst others have not (Snyder et al 1999). Within the same trial some muscle group strengths may improve whilst others do not (Ly et al 2001). It is likely that the differences are partly due to the methodological variations in assessing strength, but it also possible that testosterone has different effects on the various muscle groups. The meta-analysis found trends toward significant improvements in dominant knee and hand grip strength only (Isidori et al 2005).
The use of anabolic steroids (manufactured androgenic hormones) shuts down the release of luteinising hormone and follicle stimulating hormone secretion from the pituitary gland, which in turn decreases the amount of testosterone and sperm produced within the testes. In men, prolonged exposure to anabolic steroids results in infertility, a decreased sex drive, shrinking of the testes and breast development. Liver damage may result from its prolonged attempts to detoxify the anabolic steroids. Behavioural changes (such as increased irritability) may also be observed. Undesirable reactions also occur in women who take anabolic steroids regularly, as a high concentration of testosterone, either natural or manufactured, can cause masculinisation (virilisation) of women.
×