In addition to weight training, combining this with interval training like burst training is the best overall combo to increase HGH. In fact, Burst training has been proven to not only boost T-levels, it helps keeps your testosterone elevated and can prevent its decline. Burst training involves exercising at 90–100 percent of your maximum effort for a short interval in order to burn your body’s stored sugar (glycogen), followed by a period of low impact for recovery.
This content is strictly the opinion of Dr. Josh Axe and is for informational and educational purposes only. It is not intended to provide medical advice or to take the place of medical advice or treatment from a personal physician. All readers/viewers of this content are advised to consult their doctors or qualified health professionals regarding specific health questions. Neither Dr. Axe nor the publisher of this content takes responsibility for possible health consequences of any person or persons reading or following the information in this educational content. All viewers of this content, especially those taking prescription or over-the-counter medications, should consult their physicians before beginning any nutrition, supplement or lifestyle program.

To get a good dietary source of selenium, you can eat shellfish or Brazilian nuts. 1-2 Brazilian nuts is enough to get 200% of your daily intake. You don’t need any more than that. Read more about increasing testosterone with Brazilian nuts here. It’s a good idea to get your selenium levels checked before hand and then adjust your diet as needed to avoid selenium toxicity.

The illegal testosterone supplements give immediate results and can be obtained without a prescription. However, it is strongly recommended to avoid these boosters as they contain an anabolic steroid, which is harmful to the body. The legal kinds of them are the best testosterone supplements and are considered as safe and efficient for muscle growth and to increase sex drive, but they are also not completely devoid of adverse effects. There are many side effects associated with the use of these testosterone therapy. The natural testosterone boosters are the safest and highly recommended testosterone supplements.
Having low T is associated with decreased sex drive and less muscle mass, and one new study even found that lower levels of testosterone may raise the risk of depression. Fortunately, strength training spikes T, and living a healthy lifestyle also goes a long way toward keeping your levels topped off. But there are some completely natural compounds that can help as well.
Everyone knows that carbohydrates are extremely important for testosterone production, but instead of reaching for grains during your next meal, stack your plate high with potatoes. Research reveals that grains have inflammatory properties, but the testosterone-friendly starches in potatoes will have the bodybuilder in your life smiling at dinnertime!

If you still feel the need to supplement, keep in mind that supplemental magnesium is more likely than dietary magnesium to cause adverse effects, which is why the FDA fixed at 350 mg the Tolerable Upper Intake Level for magnesium supplementation in adults. Also, you may want to avoid magnesium oxide: it has poor bioavailability (rats absorbed only 15% in one study,[43] and humans only 4% in another[44]) and can cause intestinal discomfort and diarrhea.

Looking for ingredients that work in the realm of supplements can be like finding a needle in a haystack. Testosterone boosters, like all dietary supplements, are not approved by the Food and Drug Administration prior to marketing. This lack of oversight dates back to the 1994 Dietary Supplement Health and Education Act (DSHEA), which stipulated that purveyors of supplements weren’t required to prove the safety of their products or the veracity of what’s on the labels to the FDA before listing them for sale. Often, there isn’t a lot of scientific backing behind an ingredient, or research has been done solely on animals, not humans.
The prevalence of biochemical testosterone deficiency increases with age. This is partly due to decreasing testosterone levels associated with illness or debility but there is also convincing epidemiological data to show that serum free and total testosterone levels also fall with normal aging (Harman et al 2001; Feldman et al 2002). The symptoms of aging include tiredness, lack of energy, reduced strength, frailty, loss of libido, decreased sexual performance depression and mood change. Men with hypogonadism experience similar symptoms. This raises the question of whether some symptoms of aging could be due to relative androgen deficiency. On the other hand, similarities between normal aging and the symptoms of mild androgen deficiency make the clinical diagnosis of hypogonadism in aging men more challenging.

It is hard to know how many men among us have TD, although data suggest that overall about 2.1% (about 2 men in every 100) may have TD. As few as 1% of younger men may have TD, while as many as 50% of men over 80 years old may have TD. People who study the condition often use different cut-off points for the numbers, so you may hear different numbers being stated.

Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
Cross-sectional studies have found a positive association between serum testosterone and some measures of cognitive ability in men (Barrett-Connor, Goodman-Gruen et al 1999; Yaffe et al 2002). Longitudinal studies have found that free testosterone levels correlate positively with future cognitive abilities and reduced rate of cognitive decline (Moffat et al 2002) and that, compared with controls, testosterone levels are reduced in men with Alzheimer’s disease at least 10 years prior to diagnosis (Moffat et al 2004). Studies of the effects of induced androgen deficiency in patients with prostate cancer have shown that profoundly lowering testosterone leads to worsening cognitive functions (Almeida et al 2004; Salminen et al 2004) and increased levels of serum amyloid (Gandy et al 2001; Almeida et al 2004), which is central to the pathogenesis of Alzheimer’s disease (Parihar and Hemnani 2004). Furthermore, testosterone reduces amyloid-induced hippocampal neurotoxity in vitro (Pike 2001) as well as exhibiting other neuroprotective effects (Pouliot et al 1996). The epidemiological and experimental data propose a potential role of testosterone in protecting cognitive function and preventing Alzheimer’s disease.
Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.
BSN's Evotest is a top of the line testosterone powder designed by award BSN. While taste of this product has been suspect, Evotest aims to help pump you with naturally produced testosterone by improving your own testosterone production. Most people like the convenience of pills, but for those that can’t take pills, this powder might be a good alternative. If you want to avoid swallowing pills and boost testosterone levels, Evotest may be for you. Click To Read More...
Popular through the centuries in Ayurvedic healing (a traditional practice of medicine in India) ashwagandha is what is known as an "adaptogen." This means the body may be able to use it to help adapt to stressors. While many people supplement with it for reducing cortisol, anxiety, and fatigue levels, ashwagandha also holds relevance for us here with potential testosterone boosting benefits.[8]
Does zinc provide testosterone benefits? The answer is, yes. It is an essential mineral which is used in many processes within the body and has a similar role like vitamin D. Men who have a deficiency of zinc may suffer from low testosterone levels but taking zinc supplements can help them to improve the testosterone levels. Zinc deficiency is an essential factor in infertility because it also reduces the sperm count, but with supplements, the sperm count increases along with improvement in testosterone levels. It also helps to recover from high-intensity interval training because that also cause the decline in testosterone levels.

“The Andro 400 has been a plus to my daily requirements of energy, stamina and weight loss. I have seen a noticeable reduction in my waistline from a 40" waist to a 37" waist. I am 6'6" and weighed 252, I now weigh 238 and feel much better. Without too much information, my sex drive and performance has been positively enhanced with greater sensitivity and stamina during those intimate times with my wife. Greater sensation, pleasure and results are evident.”

Regardless of the method of testosterone treatment chosen, patients will require regular monitoring during the first year of treatment in order to monitor clinical response to testosterone, testosterone levels and adverse effects, including prostate cancer (see Table 2). It is recommended that patients should be reviewed at least every three months during this time. Once treatment has been established, less frequent review is appropriate but the care of the patient should be the responsibility of an appropriately trained specialist with sufficient experience of managing patients treated with testosterone.
Pine Pollen is an androgen, meaning in theory it can raise testosterone levels – effectively making it a naturally derived source of testosterone. Read more about this on the links below. But like I said I started taking it for a few weeks and did notice a bit more ‘up and go’ so to speak, but it did only last a few weeks. I have tried cycling it but haven’t noticed the same effects as I had when I initially started with it. I’m still experimenting and will keep this page updated. Therefore I recommend doing your own research.
When females have a higher baseline level of testosterone, they have higher increases in sexual arousal levels but smaller increases in testosterone, indicating a ceiling effect on testosterone levels in females. Sexual thoughts also change the level of testosterone but not level of cortisol in the female body, and hormonal contraceptives may affect the variation in testosterone response to sexual thoughts.[51]
The participants were seen every 4 weeks. Blood was taken to measure hormone levels, and questionnaires were given to assess physical function, health status, vitality, and sexual function. Body fat and muscle measurements were also taken at the beginning and end of the 16 weeks. The study was funded in part by NIH’s National Institute on Aging (NIA) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results appeared in the September 12, 2013, issue of the New England Journal of Medicine.
Let’s do a quick review of what I shared in the introduction to this series. August of last year was a tough month for me, primarily because of a huge and grueling project we were in the midst of here on the site. I was stressed out and my sleeping, healthy eating habits, and workout regimen all suffered. At the end of the month I got my testosterone levels tested and found that my total T was 383 ng/dL and my free T was 7.2 pg/mL – close to the average for an 85-100-year-old man.
Some of the effects of testosterone treatment are well recognised and it seems clear that testosterone treatment for aging hypogonadal men can be expected to increase lean body mass, decrease visceral fat mass, increase bone mineral density and decrease total cholesterol. Beneficial effects have been seen in many trials on other parameters such as glycemic control in diabetes, erectile dysfunction, cardiovascular risk factors, angina, mood and cognition. These potentially important effects require confirmation in larger clinical trials. Indeed, it is apparent that longer duration randomized controlled trials of testosterone treatment in large numbers of men are needed to confirm the effects of testosterone on many aspects of aging male health including cardiovascular health, psychiatric health, prostate cancer and functional capacity. In the absence of such studies, it is necessary to balance risk and benefit on the best available data. At the present time the data supports the treatment of hypogonadal men with testosterone to normalize testosterone levels and improve symptoms. Most men with hypogonadism do not have a contraindication to treatment, but it is important to monitor for adverse consequences including prostate complications and polycythemia.
And then there’s also the fact that sodium bicarbonate tends to act as a molecular switch for the cyclic adenosine monophosphate (cAMP). And increased cAMP levels – as you might already know – correlate with increased T production since cAMP activates protein kinase A and serves as a secondary messenger between cells and hormones (study, study, study, study, study, study, study, study, study).

Does the diminution that age brings with it in both total and bioavailable T have any clinical significance? This question leads us to the theme of this paper, “The Many Faces of Testosterone”. If testosterone were simply a “sex hormone” involved only with sexual desire and arousal we might tend to dismiss testosterone treatment in the aging man as merely a “life-style” therapy without any substantive basis for broad physiological necessity. The fact is, however, that the sexual attributes of testosterone are the least of its physiological necessities and that testosterone has a broad spectrum of demonstrated physiological functions as well as a wide variety of physiological and pathophysiological associations about which we are just learning.
A large number of side-effects have been attributed to testosterone. In our clinical experience, the incidence of significant adverse effects with treatment producing physiological testosterone levels is low, and many side effects attributed to testosterone are mainly relevant to supraphysiological replacement. Some adverse effects are specific to a given mode of delivery and have already been described. Potential adverse effects concerning the prostate have also been discussed and require appropriate monitoring of symptoms, PSA and digital rectal examination. Other tumors which may be androgen responsive include cancer of the breast and primary liver tumors, and these are both contraindications to testosterone treatment
Unlike aerobics or prolonged moderate exercise, short, intense exercise was found to be beneficial in increasing testosterone levels. The results are enhanced with the help of intermittent fasting. Intermittent fasting helps boost testosterone by improving the expression of satiety hormones, like insulin, leptin, adiponectin, glucacgon-like peptide-1 (GLP-1), cholecystokinin (CKK), and melanocortins, which are linked to healthy testosterone function, increased libido, and the prevention of age-induced testosterone decline. When it comes to an exercise plan that will complement testosterone function and production (along with overall health), I recommend including not just aerobics in your routine, but also:
You can search every supplement on the market, and you can try reading “how to be good at sex” books (there’s about a million of them); You can even try those strange penis exercises (please do not waste your time). Or you can take a daily supplement that is designed and developed to do one thing: transform your penis and sex life so the next time a girl is talking about some guy who “could not stop making me orgasm,” that guy is you!
Epidemiological studies have also assessed links between serum testosterone and non-coronary atherosclerosis. A study of over 1000 people aged 55 years and over found an inverse correlation between serum total and bioavailable testosterone and the amount of aortic atherosclerosis in men, as assessed by radiological methods (Hak et al 2002). Increased intima-media thickness (IMT) is an early sign of atherosclerosis and has also been shown to predict cardiovascular mortality (Murakami et al 2005). Cross-sectional studies have found that testosterone levels are negatively correlated with carotid IMT in independently living men aged 74–93 years (van den Beld et al 2003), diabetic men (Fukui et al 2003) and young obese men (De Pergola et al 2003). A 4-year follow up study of the latter population showed that free testosterone was also inversely correlated with the rate of increase of IMT (Muller et al 2004).
The researchers found that the dose of testosterone required to produce different effects in the body varied widely. The influence of testosterone and estradiol also differed. As the testosterone gel dose was reduced, the scientists showed, reductions in lean mass, muscle size, and leg-press strength resulted from decreases in testosterone itself. In contrast, increases in body fat were due to the related declines in estradiol. Both testosterone and estradiol levels were associated with libido and erectile function.
×