ZMA (unnecessary). So when I researched how to increase testosterone, a supplement called ZMA kept popping up. It’s a blend of zinc, magnesium, and vitamin B6. The purported benefits of ZMA include better and deeper sleep which indirectly is supposed to increase testosterone. Zinc and magnesium are necessary minerals in testosterone production, so a mega-dose should be useful, right? Well, no. I bought some and took it during the duration of experiment. I should have done some more research before I made the purchase. While one study in 1998 showed increased strength among athletes taking ZMA, two recent studies (study 1, study 2) have shown that it has absolutely no effect on total or free testosterone levels. Crap. My advice, unless you have a zinc and magnesium deficiency, no need to waste your money on this.
Among the changes which occur with aging are those that affect several aspects of the endocrine system which reduces its secretions to varying degrees in different individuals. These reductions in secretions are identified by a poor but widely recognized appellation, the “pauses”: menopause (decreased ovarian function), adrenopause (decreased adrenal function, especially with regard to dehydroepiandrosterone secretion), somatopause (decreased growth hormone production), andropause (decreased hypothalamic-pituitary testicular function with diminished testosterone availability and impaired spermatogenesis) (Lamberts 1997).
Regardless of the method of testosterone treatment chosen, patients will require regular monitoring during the first year of treatment in order to monitor clinical response to testosterone, testosterone levels and adverse effects, including prostate cancer (see Table 2). It is recommended that patients should be reviewed at least every three months during this time. Once treatment has been established, less frequent review is appropriate but the care of the patient should be the responsibility of an appropriately trained specialist with sufficient experience of managing patients treated with testosterone.

A: According to the package insert, there are several longer-term side effects that have occurred with testosterone therapy. Testosterone can stimulate the growth of cancerous tissue. Prostate cancer or enlargement of the prostate can develop during prolonged therapy with testosterone, and these conditions are more likely to occur in elderly men. In patients receiving testosterone therapy, tests for prostate cancer should be performed as is current practice. Androgen therapy, such as testosterone, can cause a loss of blood sugar control in patients with diabetes. Close monitoring of blood glucose is recommended. Male patients can experience feminization during prolonged therapy with testosterone. The side effects of feminization include breast soreness and enlargement. These side effects are generally reversible when treatment is stopped. Hair loss resembling male pattern baldness has also occurred. Sexual side effects including decreased ejaculatory volume and low sperm counts have occurred in patients receiving long-term therapy or excessive doses. For more information, please consult with your health care provider and visit //www.everydayhealth.com/drugs/testosterone. Michelle McDermott, PharmD


In males, the testosterone test can help find the reason for sexual problems, like reduced sex drive or erectile dysfunction. If you’re having a hard time getting your partner pregnant, the test can tell if your blood testosterone level is low. It can also screen for problems with the hypothalamus or pituitary gland. This controls how much testosterone your body makes.
In many of the studies we found, those who saw the most improvement in health, testosterone, or muscle gain were those with existing nutrient or vitamin deficiencies. This means that some gains may be due more to dietary changes and generally restoring nutrient and vitamin levels than any one magic ingredient, but also that making sure your diet includes healthy amounts of nutrients should be your first step.
Overall, it seems that both estrogen and testosterone are important for normal bone growth and maintenance. Deficiency or failure of action of the sex hormones is associated with osteoporosis and minimal trauma fractures. Estrogen in males is produced via metabolism of testosterone by aromatase and it is therefore important that androgens used for the treatment of hypogonadism be amenable to the action of aromatase to yield maximal positive effects on bone. There is data showing that testosterone treatment increases bone mineral density in aging males but that these benefits are confined to hypogonadal men. The magnitude of this improvement is greater in the spine than in the hip and further studies are warranted to confirm or refute any differential effects of testosterone at these important sites. Improvements seen in randomized controlled trials to date may underestimate true positive effects due to relatively short duration and/or baseline characteristics of the patients involved. There is no data as yet to confirm that the improvement in bone density with testosterone treatment reduces fractures in men and this is an important area for future study.
[quote]You see there is a difference between your free testosterone levels and your total testosterone levels. As testosterone flows through your blood, free testosterone is chemically active and available for your body to use as it will. While other testosterone is floating around bound to SHGB (Sex Hormone Binding Globulin). This testosterone is inactive and unable to be used by your body because the SHGB renders it inert. So while you may have a high amount of “total testosterone,” much of it may be unavailable to be used by your body. So it is really the amount of free testosterone in your body that you should be concerned with.”[/quote]

In this study, an ethical approval No. 20171008 was obtained from Ethical Committee of Qassim province, Ministry of Health, Saudi Arabia. At the beginning, a written informed consent was taken from a 30-year-old man for participation in this study. The patient came to the King Saud Hospital, Unaizah, Qassim, Saudi Arabia, with abdominal pain. He looked pale and hazy, hence, immediately admitted. A battery of lab tests was ordered by the attending physician. Moreover, abdominal ultrasound imaging was performed. The results of the tests showed high levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver injury. Other serum parameters, such as total proteins, albumin, and iron, in addition to the levels of kidney and heart enzymes were all found to be in the normal range. A complete blood count showed normal levels of red blood cells, white blood cells, and platelets. The ultrasound images of the man’s abdomen were all found to be normal as well [Figure 2]. The patient, a sportsman, described that he was taking a testosterone commercial booster product called the Universal Nutrition Animal Stak for the purpose of enhancing his testosterone profile to achieve a better performance and body composition. The attending physician decided to admit the man for 1 week. Some medications were prescribed, and the patient was discharged later after having fully recovered.

There is a polymorphic CAG repeat sequence in the androgen receptor gene, which codes for a variable number of glutamine amino acids in the part of the receptor affecting gene transcription. A receptor with a short CAG sequence produces greater activity when androgens attach, and men with shorter CAG polymorphisms exhibit androgenic traits, such as preserved bone density (Zitzmann et al 2001) and prostate growth during testosterone treatment (Zitzmann et al 2003). Indirect evidence of the importance of androgens in the development of prostate cancer is provided by case control study findings of a shorter, more active CAG repeat sequence in the androgen receptor gene of patients with prostate cancer compared with controls (Hsing et al 2000, 2002).

Our culture sees meat and fat as the enemy, while carbs and sugars are treated like gold. High fructose corn syrup is in almost everything you buy, and this sugar is known to wreak absolute havoc on our endocrine systems. Food companies are well aware that this stuff is destroying you, but as long as people continue to indulge on it they will continue to produce it.

The effect excess testosterone has on the body depends on both age and sex. It is unlikely that adult men will develop a disorder in which they produce too much testosterone and it is often difficult to spot that an adult male has too much testosterone. More obviously, young children with too much testosterone may enter a false growth spurt and show signs of early puberty and young girls may experience abnormal changes to their genitalia. In both males and females, too much testosterone can lead to precocious puberty and result in infertility. 
The basis for my thinking that T levels could be boosted by cold baths came from a post I wrote a few years ago on the benefits of cold showers. One benefit I found in my research was that they could increase testosterone levels. I mentioned a 1993 study done by the Thrombosis Research Institute in England that found increased T levels after taking a cold shower. Here’s the thing. I can’t find a link to the original source and I can’t find any other studies that support this claim! So without supporting research, I’m unsure of the effects of cold showers on testosterone.

This paper will aim to review the current evidence of clinical effects of testosterone treatment within an aging male population. As with any other clinical intervention a decision to treat patients with testosterone requires a balance of risk versus benefit. We shall try to facilitate this by examining the effects of testosterone on the various symptoms and organs involved.
Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.
It may also become a treatment for anemia, bone density and strength problems. In a 2017 study published in the journal of the American Medical Association (JAMA), testosterone treatments corrected anemia in older men with low testosterone levels better than a placebo. Another 2017 study published in JAMA found that older men with low testosterone had increased bone strength and density after treatment when compared with a placebo. 
Many endocrinologists are sounding the alarm about the damaging effects that come with exposure to common household chemicals. Called “endocrine disruptors,” these chemicals interfere with our body’s hormone system and cause problems like weight gain and learning disabilities. One type of endocrine disruptor is particularly bad news for our testosterone levels.
The regular intake of testosterone boosters is known for the high level of safety comparing to the hormone injections and the use of illegal steroids. But still to protect yourself against any possible adverse reactions, you should remember that the supplementation can’t be continuous. The breaks from time to time are required. Such an approach to the use of boosters is healthy and best-working if you aspire to enhance own hormone production without any harm.

The testicles produce an enzyme called 11ßHSD-1 which protects your testosterone molecules from the effects cortisol.  During times of prolonged stress and chronically elevated cortisol, there simply is too much cortisol for 11ßHSD-1 to handle.  This results in testosterone molecules being destroyed inside the gonads before they even enter the bloodstream (8, 9).
The reliable measurement of serum free testosterone requires equilibrium dialysis. This is not appropriate for clinical use as it is very time consuming and therefore expensive. The amount of bioavailable testosterone can be measured as a percentage of the total testosterone after precipitation of the SHBG bound fraction using ammonium sulphate. The bioavailable testosterone is then calculated from the total testosterone level. This method has an excellent correlation with free testosterone (Tremblay and Dube 1974) but is not widely available for clinical use. In most clinical situations the available tests are total testosterone and SHBG which are both easily and reliably measured. Total testosterone is appropriate for the diagnosis of overt male hypogonadism where testosterone levels are very low and also in excluding hypogonadism in patients with normal/high-normal testosterone levels. With increasing age, a greater number of men have total testosterone levels just below the normal range or in the low-normal range. In these patients total testosterone can be an unreliable indicator of hypogonadal status. There are a number of formulae that calculate an estimated bioavailable or free testosterone level using the SHBG and total testosterone levels. Some of these have been shown to correlate well with laboratory measures and there is evidence that they more reliably indicate hypogonadism than total testosterone in cases of borderline biochemical hypogonadism (Vermeulen et al 1971; Morris et al 2004). It is important that such tests are validated for use in patient populations relevant to the patient under consideration.
Testosterone is a hormone with multifaceted physiological functions and multiple associations with pathophysiological states. It is an important hormone in male reproductive and metabolic function from intrauterine life to old age. In severe or classical hypogonadal states there is little controversy about the need to administer testosterone by an intramuscular, oral or transdermal formulation. There is controversy about making the diagnosis in the less severe cases of hypogonadism associated with the aging male but the current evidence suggests that this is efficacious in appropriately selected men and that there is little if any risk in giving aging symptomatic hypogonadal men a 6 month trial of therapy to determine whether symptoms will improve.
This project is supported by the Canadian Institutes of Health Research (award #111062), Alberta Innovates - Health Solutions, and by The Metabolomics Innovation Centre (TMIC), a nationally-funded research and core facility that supports a wide range of cutting-edge metabolomic studies. TMIC is funded by Genome Alberta, Genome British Columbia, and Genome Canada, a not-for-profit organization that is leading Canada's national genomics strategy with funding from the federal government. Maintenance, support, and commercial licensing is provided by OMx Personal Health Analytics, Inc. Designed by Educe Design & Innovation Inc.
A: Testosterone production declines naturally with age. Low testosterone, or testosterone deficiency (TD), may result from disease or damage to the hypothalamus, pituitary gland, or testicles that inhibits hormone secretion and testosterone production. Treatment involves hormone replacement therapy. The method of delivery is determined by age and duration of deficiency. Oral testosterone, Testred (methyltestosterone), is associated with liver toxicity and liver tumors and so is prescribed sparingly. Transdermal delivery with a testosterone patch is becoming the most common method of treatment for testosterone deficiency in adults. A patch is worn, either on the scrotum or elsewhere on the body, and testosterone is released through the skin at controlled intervals. Patches are typically worn for 12 or 24 hours and can be worn during exercise, bathing, and strenuous activity. Two transdermal patches that are available are Androderm (nonscrotal) and Testoderm (scrotal). The Androderm patch is applied to the abdomen, lower back, thigh, or upper arm and should be applied at the same time every evening between 8 p.m. and midnight. If the patch falls off before noon, replace it with a fresh patch until it is time to reapply a new patch that evening. If the patch falls off after noon, do not replace it until you reapply a new patch that evening. The most common side effects associated with transdermal patch therapy include itching, discomfort, and irritation at the site of application. Some men may experience fluid retention, acne, and temporary abnormal breast development (gynecosmastia). AndroGel and Testim are transdermal gels that are applied once daily to the clean dry skin of the upper arms or abdomen. When used properly, these gels deliver testosterone for 24 hours. The gel must be allowed to dry on the skin before dressing and must be applied at least 6 hours before showering or swimming. Gels cannot be applied to the genitals. AndroGel is available in a metered-dose pump, which allows physicians to adjust the dosage of the medication. Side effects of transdermal gels include adverse reactions at the site of application, acne, headache, and hair loss (alopecia). For more specific information on treatments for low testosterone, consult with your doctor or pharmacist for guidance based on current health condition. Kimberly Hotz, PharmD
The basis for my thinking that T levels could be boosted by cold baths came from a post I wrote a few years ago on the benefits of cold showers. One benefit I found in my research was that they could increase testosterone levels. I mentioned a 1993 study done by the Thrombosis Research Institute in England that found increased T levels after taking a cold shower. Here’s the thing. I can’t find a link to the original source and I can’t find any other studies that support this claim! So without supporting research, I’m unsure of the effects of cold showers on testosterone.
Saw palmetto: Uses, dosage, and side effects Saw palmetto is an extract from the berries of a type of palm tree. The berries have traditionally been used to ease urinary and reproductive problems. The extract is now used in herbal remedies to stabilize testosterone. Learn about its use, its effectiveness, the science behind the claims, and any side effects. Read now
×