Findings that improvements in serum glucose, serum insulin, insulin resistance or glycemic control, in men treated with testosterone are accompanied by reduced measures of central obesity, are in line with other studies showing a specific effect of testosterone in reducing central or visceral obesity (Rebuffe-Scrive et al 1991; Marin, Holmang et al 1992). Furthermore, studies that have shown neutral effects of testosterone on glucose metabolism have not measured (Corrales et al 2004), or shown neutral effects (Lee et al 2005) (Tripathy et al 1998; Bhasin et al 2005) on central obesity. Given the known association of visceral obesity with insulin resistance, it is possible that testosterone treatment of hypogonadal men acts to improve insulin resistance and diabetes through an effect in reducing central obesity. This effect can be explained by the action of testosterone in inhibiting lipoprotein lipase and thereby reducing triglyceride uptake into adipocytes (Sorva et al 1988), an action which seems to occur preferentially in visceral fat (Marin et al 1995; Marin et al 1996). Visceral fat is thought to be more responsive to hormonal changes due to a greater concentration of androgen receptors and increased vascularity compared with subcutaneous fat (Bjorntorp 1996). Further explanation of the links between hypogonadism and obesity is offered by the hypogonadal-obesity-adipocytokine cycle hypothesis (see Figure 1). In this model, increases in body fat lead to increases in aromatase levels, in addition to insulin resistance, adverse lipid profiles and increased leptin levels. Increased action of aromatase in metabolizing testosterone to estrogen, reduces testosterone levels which induces further accumulation of visceral fat. Higher leptin levels and possibly other factors, act at the pituitary to suppress gonadotrophin release and exacerbate hypogonadism (Cohen 1999; Kapoor et al 2005). Leptin has also been shown to reduce testosterone secretion from rodent testes in vitro (Tena-Sempere et al 1999). A full review of the relationship between testosterone, insulin resistance and diabetes can be found elsewhere (Kapoor et al 2005; Jones 2007).
Bhatia et al (2006) studied 70 male patients with type2 diabetes mellitus (age range 24–78 years). Thirty-seven subjects were found to have hypogonadism based on a calculated free testosterone level of less than 6.5 μg/dl. The hypogonadal group had a statistically significant lower hematocrit. Anemia was observed in 23% of the patients (16 out of 70). In 14 of 15 anemic patients calculated free testosterone was low.
Using steroids eventually trains your body to realize that it doesn’t have to produce as much testosterone to reach its equilibrium, so to reach the same highs you’ll need to take more steroids, and when you stop taking them, your body will need to readjust — you’ll be living with low testosterone for a while (and you’ll need to see a doctor if your body doesn’t readjust on its own). Forcing your body to stay above your natural testosterone, even if you’re naturally low, can create this kind of dependency which ultimately decreases the amount of testosterone your body will produce on its own.
The basis for my thinking that T levels could be boosted by cold baths came from a post I wrote a few years ago on the benefits of cold showers. One benefit I found in my research was that they could increase testosterone levels. I mentioned a 1993 study done by the Thrombosis Research Institute in England that found increased T levels after taking a cold shower. Here’s the thing. I can’t find a link to the original source and I can’t find any other studies that support this claim! So without supporting research, I’m unsure of the effects of cold showers on testosterone.
Afrisham, R., Sadejh-Nejadi, S., SoliemaniFar, O., Kooti, W., Ashtary-Larky, D., Alamiri, F., … Khaneh-Keshi, A. (2016, November 24). Salivary testosterone levels under psychological stress and its relationship with rumination and five personality traits in medical students. Psychiatry Investigations, 13(6), 637–643. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5128352/
Testosterone treatment is unequivocally needed in classical hypogonadism for reasons discussed in subsequent subsections. In classical hypogonadism, testosterone production is usually clearly below the lower limit of normal and patients are highly symptomatic; the various symptoms are easily related to the deficiencies in various bodily systems where testosterone action is important. Symptoms of testosterone deficiency are listed in Table 2. A few prominent causes of classical hypogonadism are listed in Table 3.
Here’s a scary thought: You may be less of a man than your father was—at least hormonally. A study in the Journal of Clinical Endocrinology and Metabolism found that, on average, testosterone levels were higher in men of the same age in the ’80s than they were in the 2000s (due, researchers speculate, to higher rates of obesity and the wider use of medication these days).  

5. Beef.  Is there a manlier food than steak? Release your inner carnivore if you want to boost your testosterone level. Lean beef is rich with zinc, saturated fat, iron, protein and magnesium. We’ve already mentioned earlier on how zinc can enhance the production of testosterone. Lean beef can be an excellent food choice, since you can increase your testosterone level and muscle mass at the same.

6)  Take Cold Showers:  Cold showers have been known to stimulate and boost testosterone production and improve metabolism, detoxification and brain function.  Start your shower with warm/hot water and turn it to cold for the last 30-60 seconds while pumping your muscles and creating a big shiver as your muscles contract.  That will help to boost internal heat and boost testosterone production.  This article will help you.

Nearly 1 out of every 4 men over age 50 experience the pain of losing the ability to perform sexually as a result of erectile dysfunction (ED). Common causes of ED are atherosclerosis, diabetes, prescription drug use (namely high blood pressure, depression, and allergy drugs), and—you guessed it—low testosterone. Supplements that may help include the following:

Quantum AM/PM stack is a powerful testosterone 2 stage system that first starts with Quantum T AM. Designed with clinically proven amounts of 6 powerful t-boosting ingredients, Quantum T AM will kick your body to the next level boosting you with energy while reducing estrogen and bumping up your testosterone! The second stage features the unique Quantum T PM blend designed to work with your body as you are sleeping. It effectively works with your body to recharge testosterone levels and increase growth hormone production. It ensures you jump out of bed and supercharged for the day! This 2 bottle combination is priced UNDER $60 (that's $30 a piece) and backed by a 100% Money Back Guarantee! Click To Read More...
Withania Somnifera is another name for Ashwagandha which is an ancient herb used as a medicine. It is an adaptogen because it helps the body to handle anxiety and stress. It improves T levels along with increasing sperm production. Other than improvement in sexual performance it also helps in fat loss, strength, and stamina. It reduces the stress by reducing the output of the cortisol hormone, which acts antagonist to testosterone. This reduction helps to body to trigger the testosterone production.

Cardiovascular disease, and its underlying pathological process atherosclerosis, is an important cause of morbidity and mortality in the developed and developing world. Coronary heart disease in particular is the commonest cause of death worldwide (AHA 2002; MacKay and Mensah 2004). As well as increasing with age, this disease is more common in the male versus female population internationally, which has led to interest in the potential role of sex hormones in modulating risk of development of atherosclerosis. Concerns about the potential adverse effects of testosterone treatment on cardiovascular disease have previously contributed to caution in prescribing testosterone to those who have, or who are at risk of, cardiovascular disease. Contrary to fears of the potential adverse effects of testosterone on cardiovascular disease, there are over forty epidemiological studies which have examined the relationship of testosterone levels to the presence or development of coronary heart disease, and none have shown a positive correlation. Many of these studies have found the presence of coronary heart disease to be associated with low testosterone levels (Reviews: Jones, Jones et al 2003; Jones et al 2005).
"A lot of the symptoms are mirrored by other medical problems," Hedges says. "And for a long time, we were not attributing them to low testosterone, but to diabetes, depression, high blood pressure, and coronary artery disease. But awareness and appreciation of low testosterone has risen. We recognize now that low testosterone may be at the root of problems."
×