TT may help you but it may have adverse (harmful) results. (See discussion of these side effects below.) The Federal Drug Administration (FDA) has said that testosterone drug labels should state that there is a risk for heart disease and stroke for some men using testosterone products. All men should be checked for heart disease and stroke before, and periodically while on, TT. The AUA however, on careful review of evidence-based peer review literature, has stated that there is no strong evidence that TT either increases or decreases the risk of cardiovascular events.

An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.


We all remember the time during our teens where our body underwent majority of its changes that led us into adulthood. As far as testosterone levels go, this period of time is where the production of this hormone peaked. Testosterone levels during these teenage years remain high and consistent, and therefore it is not advisable to use a testosterone boosting supplement during this time. This is because, Natural Testosterone Boosters work by encouraging your body to increase it;s natural levels back to their maximum capacity. If your body is already producing it’s maximum amount of Testosterone, these products will be ineffective for you. You should be prioritising quality, intense training sessions with adequate nutrition, rich in protein and carbohydrates to elicit growth and repair.
So if you’re intent on maximizing your testosterone levels, and/or you have applied all of the above and you’re still not satisfied with your results (which would be surprising) then you could try the below. I will point out that some of these tips may not have the scientific evidence to back them up like the previous points, but I can assure you that either I have or do use them (and have positive results), or a client has used them with pleasing results, or finally it is such a new conception that there isn’t enough evidence to prove it one way or another.
Once you have surpassed your early twenties, natural testosterone levels slowly begin to decline. This is a natural occurrence which occurs in all men, however can be prevented to some extent by ensuring your diet is rich in vitamins, minerals and quality fats. You can also supplement with a Natural Testosterone Booster which will work by encouraging your body to produce more Testosterone, back up to levels you could produce in your younger years.
There is an increased incidence of hypogonadism in men with rheumatoid arthritis. Tengstrand et al (2002) studied hormonal levels in 104 men with rheumatoid arthritis and 99 age-matched healthy men. They divided their subjects into 3 age groups: 30–49, 40–59, 60–69. Mean non-sex hormone binding globulin-bound testosterone (bioavailable testosterone) was lower in men with rheumatoid arthritis for each of the three groups. LH was also found to be lower in the patients with rheumatoid arthritis suggesting a hypothalamic-pituitary cause of the reduced bioavailable testosterone. Of the 104 men with rheumatoid arthritis, 33 had hypogonadism compared to 7 of the 99 healthy controls.
However, some of these signs and symptoms can be caused by factors other than low testosterone, including medication side effects, thyroid problems, depression and excessive alcohol use. There are also conditions, such as obstructive sleep apnea, that might affect testosterone levels. Once these conditions are identified and treated, testosterone typically will return to a normal level.
I bought most of the ingredients for my Testosterone Salad at Whole Foods. For those curious, I added up all the ingredients and divided by six (I typically ate six of these salads in a week). The cost per salad was roughly $5. That’s about the price many folks pay every day for a crappy fast food meal. If you’re on a budget, I’m sure you could get the ingredients at Walmart and bring the cost per salad down even more.

The final two studies looked directly at soy vs testosterone levels. The first looked at introducing consumption of soya flour on testosterone levels. They found that those who ate the Soy flour lowered their T levels during the study (43). And the second study looked at the consumption of soy protein isolates (powder) in healthy men. They found that testosterone levels decreased upon consumption of soy powder (45).


Remember that each person is unique, and each body responds differently to treatment. TT may help erectile function, low sex drive, bone marrow density, anemia, lean body mass, and/or symptoms of depression. However, there is no strong evidence that TT will help memory recall, measures of diabetes, energy, tiredness, lipid profiles, or quality of life.
In addition to its role as a natural hormone, testosterone is used as a medication, for instance in the treatment of low testosterone levels in men and breast cancer in women.[10] Since testosterone levels decrease as men age, testosterone is sometimes used in older men to counteract this deficiency. It is also used illicitly to enhance physique and performance, for instance in athletes.

Male hypogonadism becomes more common with increasing age and is currently an under-treated condition. The diagnosis of hypogonadism in the aging male requires a combination of symptoms and low serum testosterone levels. The currently available testosterone preparations can produce consistent physiological testosterone levels and provide for patient preference.
Some boys even develop enlarged testicles and penis, armpit or pubic hair, as well as facial hair as early as age nine! Early puberty is not something to be taken lightly because it can significantly influence physical and psychological health, including an increased risk of hormone-related cancers. Precocious sexual development may also lead to emotional and behavioral issues, such as:

The diagnosis of late-onset hypogonadism requires the combination of low serum testosterone levels with symptoms of hypogonadism. Questionnaires are available which check for the symptoms of hypogonadism. These have been validated for the assessment of aging patients with hypogonadism (Morley et al 2000; Moore et al 2004) but have a low specificity. In view of the overlap in symptoms between hypogonadism, aging and other medical conditions it is wise to use a formal method of symptom assessment which can be used to monitor the effects of testosterone replacement.


This is an important herb which has been used as therapeutic for centuries. It helps in improving sexual desires and boosts T levels. It is also useful in erectile dysfunction by raising T levels. People having normal T level don’t get affected by taking Tribulus. With the testosterone boosting qualities of Tribulus, this natural supplement works great for building muscle and gaining strength in the gym.
Fenugreek is often found in Indian, Turkish, and Persian cuisine. Multiple studies have found it to improve testosterone levels, and in particular, sexual performance. Scientists at Babu Banarasi Das University and King George’s Medical University in India have found that fenugreek improved testosterone levels. Testosterone levels increased for 90% of the volunteers, sperm morphology (the size and shape of sperm) improved for 14.6%, and more than 50% of volunteers experienced improvements in mental alertness, mood, and libido.
It also has vitamin B6. One study called out folate and vitamins B6 and B12 as important nutrients for athletes to achieve optimal health and performance. Vitamin B6 is commonly found in food, like fortified cereals, and as with magnesium, it’s possible to have too much vitamin B6. The NIH recommends an upper daily limit for adults of 100mg per day. Beast Sports comes well under this limit at 10mg per day, but still well above the minimum recommended dose of 1.7mg needed to see benefits.
The chemical synthesis of testosterone from cholesterol was achieved in August that year by Butenandt and Hanisch.[183] Only a week later, the Ciba group in Zurich, Leopold Ruzicka (1887–1976) and A. Wettstein, published their synthesis of testosterone.[184] These independent partial syntheses of testosterone from a cholesterol base earned both Butenandt and Ruzicka the joint 1939 Nobel Prize in Chemistry.[182][185] Testosterone was identified as 17β-hydroxyandrost-4-en-3-one (C19H28O2), a solid polycyclic alcohol with a hydroxyl group at the 17th carbon atom. This also made it obvious that additional modifications on the synthesized testosterone could be made, i.e., esterification and alkylation.

A number of epidemiological studies have found that bone mineral density in the aging male population is positively associated with endogenous androgen levels (Murphy et al 1993; Ongphiphadhanakul et al 1995; Rucker et al 2004). Testosterone levels in young men have been shown to correlate with bone size, indicating a role in determination of peak bone mass and protection from future osteoporosis (Lorentzon et al 2005). Male hypogonadism has been shown to be a risk factor for hip fracture (Jackson et al 1992) and a recent study showed a high prevalence of hypogonadism in a group of male patients with average age 75 years presenting with minimal trauma fractures compared to stroke victims who acted as controls (Leifke et al 2005). Estrogen is a well known determinant of bone density in women and some investigators have found serum estrogen to be a strong determinant of male bone density (Khosla et al 1998; Khosla et al 2001). Serum estrogen was also found to correlate better than testosterone with peak bone mass (Khosla et al 2001) but this is in contradiction of a more recent study showing a negative correlation of estrogen with peak bone size (Lorentzon et al 2005). Men with aromatase deficiency (Carani et al 1997) or defunctioning estrogen receptor mutations (Smith et al 1994) have been found to have abnormally low bone density despite normal or high testosterone levels which further emphasizes the important influence of estrogen on male bone density.


One study found that men who took 3,332 international units (IU) of vitamin D daily for one year significantly increased their testosterone levels. But vitamin D supplements may only work for men who are severely deficient in this specific vitamin. Another study found that men without a vitamin D deficiency had no increase in testosterone levels after taking vitamin D.
A number of research groups have tried to further define the relationship of testosterone and body composition by artificial alteration of testosterone levels in eugonadal populations. Induction of a hypogonadal state in healthy men (Mauras et al 1998) or men with prostate cancer (Smith et al 2001) using a gonadotrophin-releasing-hormone (GnRH) analogue was shown to produce increases in fat mass and decreased fat free mass. Another experimental approach in healthy men featured suppression of endogenous testosterone production with a GnRH analogue, followed by treatment with different doses of weekly intramuscular testosterone esters for 20 weeks. Initially the experiments involved men aged 18–35 years (Bhasin et al 2001) but subsequently the study was repeated with a similar protocol in men aged 60–75 years (Bhasin et al 2005). The different doses given were shown to produce a range of serum concentrations from subphysiological to supraphysiological (Bhasin et al 2001). A given testosterone dose produced higher serum concentrations of testosterone in the older age group (Bhasin et al 2005). Subphysiological dosing of testosterone produced a gain in fat mass and loss of fat free mass during the study. There were sequential decreases in fat mass and increases in fat free mass with each increase of testosterone dose. These changes in body composition were seen in physiological and supraphysiological treatment doses. The trend was similar in younger versus older men but the gain of fat mass at the lowest testosterone dose was less prominent in older patients (Bhasin et al 2001; Bhasin et al 2005). With regard to muscle function, the investigators showed dose dependent increases in leg strength and power with testosterone treatment in young and older men but there was no improvement in fatigability (Storer et al 2003; Bhasin et al 2005).
Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256]

The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects.
Christopher Walker is a co-founder of UMZU and creator of the Thermo Diet. He is the first person to get a Duke Neuroscience degree in 3 years. After naturally solving his own health complications with a brain tumor as a teenager, he has devoted his life to creating all-natural products and education to help men, women, children and pets to improve their own health naturally using science-backed research.
Studies of the effects on cognition of testosterone treatment in non-cognitively impaired eugonadal and hypogonadal ageing males have shown varying results, with some showing beneficial effects on spatial cognition (Janowsky et al 1994; Cherrier et al 2001), verbal memory (Cherrier et al 2001) and working memory (Janowsky et al 2000), and others showing no effects (Sih et al 1997; Kenny et al 2002). Other trials have examined the effects of testosterone treatment in older men with Alzheimer’s disease or cognitive decline. Results have been promising, with two studies showing beneficial effects of testosterone treatment on spatial and verbal memory (Cherrier et al 2005b) and cognitive assessments including visual-spatial memory (Tan and Pu 2003), and a recent randomized controlled trial comparing placebo versus testosterone versus testosterone and an aromatase inhibitor suggesting that testosterone treatment improves spatial memory directly and verbal memory after conversion to estrogen (Cherrier et al 2005a). Not all studies have shown positive results (Kenny et al 2004; Lu et al 2005), and variations could be due to the different measures of cognitive abilities that were used and the cognitive state of men at baseline. The data from clinical trials offers evidence that testosterone may be beneficial for certain elements of cognitive function in the aging male with or without cognitive decline. Larger studies are needed to confirm and clarify these effects.
For men with low blood testosterone levels, the benefits of hormone replacement therapy usually outweigh potential risks. However, for most other men it's a shared decision with your doctor. It offers men who feel lousy a chance to feel better, but that quick fix could distract attention from unknown long-term hazards. "I can't tell you for certain that this raises your personal risk of heart problems and prostate cancer, or that it doesn't," Dr. Pallais says.
×